
 Optimism
 Security Assessment

 November 10, 2022

 Prepared for:

 Matthew Slipper

 Optimism

 Prepared by: Michael Colburn and David Pokora

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Optimism Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Optimism
 under the terms of the project statement of work and has been made public at Optimism’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Optimism Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 4

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Automated Testing 11

 Test Harness Configuration 11

 Test Results 11

 contracts-bedrock 11

 op-node 17

 op-geth 21

 Summary of Findings 25

 Detailed Findings 26

 1. Risk of misconfigured GasPriceOracle state variables that can lock L2 26

 A. Vulnerability Categories 27

 B. Testing the Project Targets 29

 C. Recommendations for Improving Testability 31

 Trail of Bits 3 Optimism Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 Optimism engaged Trail of Bits to review the testing strategy of its Optimistic Rollup engine,
 Optimistic L2 go-ethereum fork, and Bedrock smart contracts. From August 22 to
 September 23, 2022, a team of two consultants conducted a review of the client-provided
 source code, with eight person-weeks of effort. Details of the project’s timeline, test targets,
 and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the system, including access to the source code and
 documentation. We performed automated analysis against the project targets, as
 described in the Automated Testing section of the report.

 Summary of Findings
 The audit uncovered a significant flaw that could impact system confidentiality, integrity, or
 availability. A summary of this finding is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 1

 Trail of Bits 4 Optimism Security Assessment
 PUBLIC

 Notable Finding
 The significant flaw that impacts system confidentiality, integrity, or availability is described
 below.

 ● TOB-OPTEST-1
 The GasPriceOracle contract deployed to L2, which is used to update L1 costs
 charged on L2, could be misconfigured in a way that sets gas prices high enough to
 prevent transactions from being processed. Certain misconfigurations may even
 block future attempts to reset the GasPriceOracle .

 Trail of Bits 5 Optimism Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 Michael Colburn , Consultant David Pokora , Consultant
 michael.colburn@trailofbits.com david.pokora@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 August 18, 2022 Pre-project kickoff call

 August 29, 2022 Status update meeting #1

 September 6, 2022 Status update meeting #2

 September 19, 2022 Status update meeting #2

 September 26, 2022 Delivery of report draft

 September 26, 2022 Report readout meeting

 November 10, 2022 Delivery of final report

 Trail of Bits 6 Optimism Security Assessment
 PUBLIC

mailto:dan@trailofbits.com
mailto:cara.pearson@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:david.pokora@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Optimism team’s
 op-geth , op-node , and Bedrock smart contracts. Specifically, we sought to answer the
 following non-exhaustive list of questions:

 ● Which invariants across the project targets should be tested to best ensure the
 targets’ security?

 ● Does the existing testing methodology contain gaps that could cause tests to miss
 security-critical issues?

 ● Could any of the existing unit tests be better served with an accompanying fuzz test?

 ● How could the Slither API be used to statically analyze smart contracts within
 Optimism?

 ● Could the testability of certain targets be improved in any way?

 ● Generally, does the system behave as expected when tested under various
 conditions?

 ○ Are blocks produced in a timely fashion?

 ○ Are access controls in place to prevent users from submitting deposit
 transactions through the L2 RPC endpoint?

 ○ Does the system work end to end? Do the individual components of op-geth
 and op-node behave as expected?

 ○ Are data structures serialized and deserialized without data loss?

 ○ Are balances and fees charged as expected?

 ○ Does the system behave as expected when forks are encountered?

 Trail of Bits 7 Optimism Security Assessment
 PUBLIC

https://github.com/crytic/slither/

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 Optimism (op-node, op-e2e, Bedrock contracts)

 Repository https://github.com/ethereum-optimism/optimism

 Version b31d35b67755479645dd150e7cc8c6710f0b4a56

 Types Golang, Solidity

 Platforms Linux, macOS, Windows, Ethereum

 Optimistic Execution Engine (op-geth)

 Repository https://github.com/ethereum-optimism/reference-optimistic-geth

 Version a68e5aa189e14fde92cec03c1abd98cc7f0db263

 Types Golang, Solidity

 Platforms Linux, macOS, Windows

 Trail of Bits 8 Optimism Security Assessment
 PUBLIC

https://github.com/ethereum-optimism/optimism/
https://github.com/ethereum-optimism/reference-optimistic-geth

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Documentation of invariants within the OptimismPortal Bedrock smart contract
 and its relevant subcomponents, such as ResourceMetering

 ● Documentation of invariants across the op-node subproject of the optimism
 monorepo related to smart contracts and op-node functionality

 ● Documentation of invariants across the op-geth project

 ● Verification of various invariants throughout the project’s unit, integration, and
 property tests, which resulted in the following:

 ○ Testing the round-trip serialization of objects across op-node and op-geth
 did not result in the discovery of any new vulnerabilities.

 ○ Verification of the L1/L2 gas fee computation revealed that the
 GasPriceOracle contract could be misconfigured in a way that sets
 unreasonably high transaction fees, preventing L2 transaction submissions
 from being accepted (TOB-OPTEST-1).

 ○ The block production and fee computations were not tested for all potential
 configuration permutations of op-node and op-geth ; nonetheless, while
 running tests during the audit, we did not find these computations to be
 problematic.

 ○ The access controls intended to prevent users from submitting deposit
 transactions through the L2 RPC endpoint were found to be effective.

 ○ Fuzz testing the system’s data structures, such as go-ethereum transactions
 (including the new deposit transaction type) and BatchData in the op-node
 subproject, found that they are encoded/decoded successfully without data
 loss.

 ○ Verification of transfer-related invariants found that the system handles
 transfers as expected: attempting to transfer more ETH on L2 than an
 account owner holds results in errors, while attempting to transfer less than
 an account owner holds results in the expected transfer of the requested
 ETH.

 Trail of Bits 9 Optimism Security Assessment
 PUBLIC

 ○ Verification of the OptimismPortal contract’s deposit routines and
 inherited contract methods found that they behave as expected in terms of
 burning ETH, hashing, constructing proofs, aliasing addresses for deposits,
 enforcing gas metering, and more.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● We were unable to perform additional testing of system interactions in a concurrent
 fashion (e.g., cascading deposits/withdrawals asynchronously to ensure the state
 machine behaves as expected).

 ● Not all invariants across the system could be documented.

 We recommend that the Optimism team take the following steps to mitigate coverage
 limitations in future audits and testing:

 ● Further derive invariants from any off-chain smart contract tests and follow up on
 additional invariants related to the operation of transaction pools, block
 construction, P2P operations, payload attribute derivation, and fork conditions.

 ● Continue writing fuzz tests for all existing unit tests that do not have an
 accompanying fuzz test. This will ensure that additional conditions or values that are
 hard-coded within the unit tests undergo additional scrutiny.

 Trail of Bits 10 Optimism Security Assessment
 PUBLIC

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description

 Slither A static analysis framework that can statically verify algebraic relationships
 between Solidity variables

 Echidna A smart contract fuzzer that can rapidly test security properties via
 malicious, coverage-guided test case generation

 go test A first-party unit- and property-testing framework for Golang

 Test Results
 The results of testing the system properties that we enumerated during the audit are
 detailed below.

 contracts-bedrock
 This section details the property tests written for the contracts-bedrock project located
 in the optimism monorepo under the packages/contracts-bedrock/ directory.

 OptimismPortal : This section details security invariants drawn from the OptimismPortal
 smart contract, the tests they underwent, and the results of this testing.

 Property Test Result

 The initialize() function cannot be called
 more than once.

 Property test (Echidna):

 echidna_never_initiali
 ze_twice

 Passed

 Trail of Bits 11 Optimism Security Assessment
 PUBLIC

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna
https://pkg.go.dev/testing

 The contract cannot be deployed with an
 invalid L2OutputOracle contract address
 (such as the zero address) and continue to
 function as intended.

 - Not Tested

 The amount of ETH taken by the
 depositTransaction() function always
 equals or exceeds the amount to be minted
 on L2.

 Property test (Echidna):

 echidna_mint_less_than
 _taken

 Passed

 A nonzero _to address cannot be supplied to
 depositTransaction() when
 _isCreation is set to true .

 Property test (Echidna):

 echidna_never_nonzero_
 to_creation_deposit

 Passed

 Unit test (Slither):

 test_deposit_transacti
 on_integrity

 Gas metering always burns at least the gas
 cost calculated from the _gasLimit
 argument when depositTransaction() is
 called.

 - Not Tested

 The from parameter in the
 TransactionDeposited event emitted by
 depositTransaction() is aliased if the
 caller is a contract address.

 Property test (Echidna):

 echidna_alias_from_con
 tract_deposit

 Passed

 The from parameter in the
 TransactionDeposited event emitted by
 depositTransaction() is not aliased if the
 caller is an externally owned address.

 Property test (Echidna):

 echidna_no_alias_from_
 EOA_deposit

 Passed

 Calling the
 L1CrossDomainMessenger.sendMessage

 - Not Tested

 Trail of Bits 12 Optimism Security Assessment
 PUBLIC

 function results in the same operation as
 calling depositTransaction directly with
 similar parameters.

 Calls to the
 finalizeWithdrawalTransaction
 function cannot reenter the function.

 - Not Tested

 A withdrawal cannot be finalized until after
 the finalization period has concluded.

 - Not Tested

 A withdrawal can be finalized only once. - Not Tested

 Withdrawal finalization fails if the L2 oracle
 has no output root for the relevant block
 number.

 - Not Tested

 Withdrawal finalization fails if the expected
 output root cannot be generated from the
 provided proof.

 - Not Tested

 Withdrawal finalization fails if the withdrawal
 request is not accompanied by a valid
 inclusion proof.

 - Not Tested

 A gas cost of at least the sum of
 _tx.gasLimit and FINALIZE_GAS_BUFFER
 (a weak lower bound) is required for calls to
 finalizeWithdrawalTransaction .

 - Not Tested

 ResourceMetering : This section details security invariants drawn from the
 ResourceMetering smart contract, the tests they underwent, and the results of this
 testing.

 Trail of Bits 13 Optimism Security Assessment
 PUBLIC

 Property Test Result

 Given a block that uses more gas than the
 TARGET_RESOURCE_LIMIT value, the basefee
 used in the immediate next block is greater
 than that of the given block.

 Property test (Echidna):

 echidna_high_usage_ra
 ise_basefee

 Passed

 Given a block that uses less gas than the
 TARGET_RESOURCE_LIMIT value, the basefee
 used in the immediate next block is less than
 that of the given block (or is equal to
 MINIMUM_BASE_FEE).

 Property test (Echidna):

 echidna_low_usage_low
 er_basefee

 Passed

 The basefee of a given block is never less than
 MINIMUM_BASE_FEE .

 Property test (Echidna):

 echidna_never_below_m
 in_basefee

 Passed

 prevBoughtGas does not exceed
 MAX_RESOURCE_LIMIT .

 Property test (Echidna):

 echidna_never_above_m
 ax_gas_limit

 Passed

 Given two or more empty blocks, the reduction
 of the basefee is greater than the basefee
 reduction for one or fewer empty blocks (down
 to MINIMUM_BASE_FEE).

 - Not Tested

 A block's basefee cannot increase by more
 than a factor of
 (1+1/BASE_FEE_MAX_CHANGE_DENOMINATOR)
 multiplied by the immediately preceding
 block's basefee .

 Property test (Echidna):

 echidna_never_exceed_
 max_increase

 Passed

 A block's basefee cannot decrease by more
 than a factor of
 (1-1/BASE_FEE_MAX_CHANGE_DENOMINATOR)
 multiplied by the immediately preceding

 Property test (Echidna):

 echidna_never_exceed_

 Passed

 Trail of Bits 14 Optimism Security Assessment
 PUBLIC

 block's basefee . max_decrease

 L2OutputOracle : This section details security invariants drawn from the L2OutputOracle
 smart contract, the tests they underwent, and the results of this testing.

 Property Test Result

 L2 block numbers are monotonically
 increasing.

 - Not Tested

 A proposal's block number cannot correspond
 to a timestamp in the future.

 - Not Tested

 A proposal with an empty output root is
 invalid.

 - Not Tested

 AddressAliasHelper : This section details security invariants drawn from the
 AddressAliasHelper smart contract, the tests they underwent, and the results of this
 testing.

 Property Test Result

 The L1-to-L2 address aliasing process is able to
 encode any address and decode the original
 address without failure.

 Property test (Echidna):

 echidna_round_trip_al
 iasing

 Passed

 Burn : This section details security invariants drawn from the Burn smart contract, the tests
 they underwent, and the results of this testing.

 Property Test Result

 Calls to eth to burn ETH remove exactly
 _value ETH from the calling contract.

 Property test (Echidna): Passed

 Trail of Bits 15 Optimism Security Assessment
 PUBLIC

 echidna_burn_eth

 Calls to gas to burn gas burn at minimum the
 amount of gas passed as a parameter.

 Property test (Echidna):

 echidna_burn_gas

 Passed

 Encoding : This section details security invariants drawn from the Encoding smart
 contract, the tests they underwent, and the results of this testing.

 Property Test Result

 Versioned nonce encoding and decoding
 operations succeed for all inputs and are
 inverse operations of each other.

 Property test (Echidna):

 echidna_round_trip_en
 coding

 Passed

 Hashing : This section details security invariants drawn from the Hashing smart contract,
 the tests they underwent, and the results of this testing.

 Property Test Result

 Calls to hashCrossDomainMessage never
 succeed when an invalid nonce (i.e., one whose
 version is greater than 1) is passed as an
 argument.

 Property test (Echidna):

 echidna_hash_xdomain_
 msg_high_version

 Passed

 Calling hashCrossDomainMessage with a
 version 0 nonce results in the same operation
 as calling hashCrossDomainMessageV0
 directly.

 Property test (Echidna):

 echidna_hash_xdomain_
 msg_0

 Passed

 Calling hashCrossDomainMessage with a
 version 1 nonce results in the same operation
 as calling hashCrossDomainMessageV1
 directly.

 Property test (Echidna):

 echidna_hash_xdomain_
 msg_1

 Passed

 Trail of Bits 16 Optimism Security Assessment
 PUBLIC

 op-node
 This section details the property tests that we wrote for the op-node subproject located in
 the optimism monorepo under the op-node/ directory. All unit and fuzz tests are written
 for use with go test .

 Property Test Result

 Various op-node configurations cannot
 introduce undefined behavior into the system
 (such as the inability to finalize deposits or
 withdrawals).

 - Not Tested

 L2 block creation fails if the new L2 block (with
 a timestamp of the current L2 block header’s
 timestamp summed with the BlockTime
 value) has a timestamp less than the L1 origin
 block that it is derived from.

 Property test:

 FuzzRejectCreateBlock
 BadTimestamp

 Passed

 Unit test:

 TestRejectCreateBlock
 BadTimestamp

 Passed

 Logs other than the TransactionDeposited
 log do not have inadvertent effects on the
 system.

 Property test:

 FuzzDeriveDepositsRou
 ndTrip

 Passed

 Unit test:

 TestDeriveUserDeposit
 s

 Passed

 Deposit logs can be encoded and decoded with
 their original values intact.

 Property test:

 FuzzDeriveDepositsRou
 ndTrip

 Passed

 Trail of Bits 17 Optimism Security Assessment
 PUBLIC

 Unit test:

 TestDeriveUserDeposit
 s

 Passed

 An incorrectly parsed
 TransactionDeposited log for a single
 deposit does not affect the processing of other
 deposits.

 - Not Tested

 Unknown DEPOSIT_VERSION values specified
 by TransactionDeposited events are
 rejected.

 Property test:

 FuzzDeriveDepositsBad
 Version

 Passed

 Deposits are not derived from failed
 transactions on L1.

 Property test:

 FuzzDeriveDepositsRou
 ndTrip

 Passed

 Unit test:

 TestDeriveUserDeposit
 s

 Passed

 Failures in the system do not cause funds
 deposited after such failures to be lost.

 - Not Tested

 Deposit transactions can be derived from
 L1Info structures.

 Property test:

 FuzzParseL1InfoDeposi
 tTxDataValid

 Passed

 Unit test:

 TestParseL1InfoDeposi

 Passed

 Trail of Bits 18 Optimism Security Assessment
 PUBLIC

 tTxData

 Deriving L1Info data from deposit transaction
 data of an invalid length always fails.

 Property test:

 FuzzParseL1InfoDeposi
 tTxDataBadLength

 Passed

 Unit test:

 TestParseL1InfoDeposi
 tTxData

 Passed

 The correct L1 origin is always selected when
 the createNewL2Block function constructs
 an L2 block.

 - Not Tested

 Encoding and decoding the BatchData struct
 preserves the struct’s original values.

 Property test:

 FuzzBatchRoundTrip

 Passed

 Unit test:

 TestBatchRoundTrip

 Passed

 The BatchQueue struct ignores batches with a
 timestamp prior to the safe L2 header’s
 timestamp during the stepping process.

 - Not Tested

 The BatchQueue struct immediately updates
 the BatchQueueOutput variable with
 BatchData submitted with consecutive
 timestamps after the safe L2 header’s
 timestamp.

 Unit test:

 TestBatchQueueEager

 Passed

 The BatchQueue progress is open if the
 previous progress was open before the current

 Unit test: Passed

 Trail of Bits 19 Optimism Security Assessment
 PUBLIC

 progress started and if the current progress is
 closed before the stepping process.

 TestBatchQueueFull

 The BatchQueue progress is closed if the
 previous progress was closed before the
 stepping process.

 Unit test:

 TestBatchQueueFull

 Passed

 Batches are considered invalid if their
 timestamps are outside of the
 minimum/maximum L2 time window.

 Unit test:

 TestValidBatch

 Passed

 Batches are considered invalid if they were
 tagged with an epoch number that is not the
 current one.

 Unit test:

 TestValidBatch

 Passed

 Batches are considered invalid if their
 timestamps are not aligned to the block time
 step.

 Unit test:

 TestValidBatch

 Passed

 Batches are considered invalid if they contain a
 DepositTx type transaction.

 Unit test:

 TestValidBatch

 Passed

 Batches are considered invalid if they do not
 contain any transactions.

 Unit test:

 TestValidBatch

 Passed

 Batches are considered invalid if their epoch
 hash does not match the current one.

 Unit test:

 TestValidBatch

 Passed

 A batch is dropped if a reset rolls back a full
 sequence window or if the batch’s timestamp
 otherwise precedes the safe L2 header.

 - Not Tested

 Trail of Bits 20 Optimism Security Assessment
 PUBLIC

 op-geth
 This section details the property tests that we wrote for the op-geth project. Some tests
 exist within the op-geth repository directly, while others exist in op-e2e within the
 optimism monorepo. The location of each test is indicated in parentheses in the “Test”
 column.

 Property Test Result

 op-geth configurations with different values
 for parameters, such as sequence windows
 and other time durations, do not introduce
 undefined behavior into the system, such as
 the inability to finalize deposits or withdrawals.

 - Not Tested

 L1 costs set in the GasPriceOracle contract
 are appropriately enforced in L2 transaction
 fees.

 - Not Tested

 L1 fees are appropriately awarded to the
 BaseFeeRecipient address.

 - Not Tested

 The nonce of a deposit sender is incremented
 on L2, regardless of whether an L1 deposit
 transaction receipt reported a failure status.

 Unit test (op-e2e):

 TestMintOnRevertedDep
 osit

 Passed

 When L2 processes a deposit transaction,
 failure to transfer ETH to another address does
 not result in the unexpected loss of ETH
 minted during the transaction.

 Unit test (op-e2e):

 TestMintOnRevertedDep
 osit

 Passed

 The L1 costs set in the GasPriceOracle
 contract cannot be incorrectly set to values
 that prevent the contract from being further
 updated.

 Unit test (op-e2e):

 TestGasPriceOracleFee
 Updates

 Failed

 Trail of Bits 21 Optimism Security Assessment
 PUBLIC

 The L1 costs set in the GasPriceOracle
 contract cannot be incorrectly set to values
 that prevent any transactions from being
 processed on L2.

 Unit test (op-e2e):

 TestGasPriceOracleFee
 sL2Lock

 Failed

 With the addition of the DepositTx type
 transaction, transaction serialization is not
 prone to data loss or misinterpretation.

 Property test (op-geth):

 FuzzTransactionMarshalling
 RoundTrip

 Passed

 The L2 sequencer/verifier does not accept
 DepositTx transaction types submitted
 through the RPC endpoint.

 Unit test (op-e2e):

 TestL2SequencerRPCDep
 ositTx

 Passed

 RPC endpoints appropriately enforce size limits
 when various deposit transactions are
 included.

 - Not Tested

 In the event of an L1 reorganization, L2 makes
 appropriate state updates, such as to account
 balances.

 - Not Tested

 The L2 output submitter is updated after an L2
 block is committed.

 Unit test (op-e2e):

 TestL2OutputSubmitter

 Passed

 The L2 output submitter is resistant to
 reorganization.

 - Not Tested

 L2 nodes sync blocks from other nodes before
 they are confirmed on L1.

 Unit test (op-e2e):

 TestSystemMockP2P

 Passed

 The transaction pool appropriately enforces
 the NoTxPool flag and pushes forced

 - Not Tested

 Trail of Bits 22 Optimism Security Assessment
 PUBLIC

 transactions through as expected.

 In the event of a large number of forced
 transactions, the transaction pool continues to
 operate, and standard Ethereum transactions
 in the transaction pool do not expire or
 become stale.

 - Not Tested

 Deposit transactions that fail to transfer value
 on L2 (e.g., because of insufficient balance) do
 not negatively affect valid deposit transactions.

 Unit test (op-e2e):

 TestMixedDepositValid
 ity

 Passed

 Failed withdrawal transactions do not prevent
 valid withdrawal transactions from executing
 (end to end).

 - Not Tested

 Withdrawals that specify an invalid timestamp,
 such as one for which an L2 output root does
 not exist or is not FINALIZATION_PERIOD
 seconds old, are rejected.

 Unit test (op-e2e):

 TestMixedWithdrawalVa
 lidity

 Passed

 The sender , target , message , value , and
 gasLimit fields cannot be modified in a
 withdrawal request without failure.

 Unit test (op-e2e):

 TestMixedWithdrawalVa
 lidity

 Passed

 Failed deposits on L1 that are then reorganized
 to be successful deposits are handled
 appropriately by L2.

 - Not Tested

 Different verifiers are not able to derive
 different fees.

 - Not Tested

 Trail of Bits 23 Optimism Security Assessment
 PUBLIC

 Trail of Bits 24 Optimism Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Risk of misconfigured GasPriceOracle state variables
 that can lock L2

 Data
 Validation

 Undetermined

 Trail of Bits 25 Optimism Security Assessment
 PUBLIC

 Detailed Findings

 1. Risk of misconfigured GasPriceOracle state variables that can lock L2

 Severity: Undetermined Difficulty: Medium

 Type: Data Validation Finding ID: TOB-OPTEST-1

 Target:
 optimism/packages/contracts/L2/predeploys/OVM_GasPriceOracle.sol ,
 op-geth/core/rollup_l1_cost.go

 Description
 When bootstrapping the L2 network operated by op-geth , the GasPriceOracle contract
 is pre-deployed to L2, and its contract state variables are used to specify the L1 costs to be
 charged on L2. Three state variables are used to compute the costs— decimals ,
 overhead , and scalar —which can be updated through transactions sent to the node.

 However, these state variables could be misconfigured in a way that sets gas prices high
 enough to prevent transactions from being processed. For example, if overhead were set
 to the maximum value, a 256-bit unsigned integer, the subsequent transactions would not
 be accepted.

 In an end-to-end test of the above example, contract bindings used in op-e2e tests (such
 as the GasPriceOracle bindings used to update the state variables) were no longer able
 to make subsequent transactions/updates, as calls to SetOverhead or SetDecimals
 resulted in a deadlock. Sending a transaction directly through the RPC client did not
 produce a transaction receipt that could be fetched.

 Recommendations
 Short term, implement checks to ensure that GasPriceOracle parameters can be
 updated if fee parameters were previously misconfigured. This could be achieved by
 adding an exception to GasPriceOracle fees when the contract owner calls methods
 within the contract or by setting a maximum fee cap.

 Long term, develop operational procedures to ensure the system is not deployed in or
 otherwise entered into an unexpected state as a result of operator actions.

 Trail of Bits 26 Optimism Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 27 Optimism Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 28 Optimism Security Assessment
 PUBLIC

 B. Testing the Project Targets

 This section describes how to execute the tests that Trail of Bits ran during the
 engagement.

 Echidna Fuzz Tests (Bedrock Contracts):
 Echidna is an Ethereum smart contract fuzzer that allows users to write on-chain property
 tests to verify the expected states of their applications.

 We provided Git patches for each project target alongside the report containing the tests
 generated during the course of the assessment. To prepare the environment for fuzz
 testing, we removed the optimism/packages/contracts-bedrock/contracts/test
 directory, as it contained unlinked libraries that are incompatible with Echidna in a default
 deployment scheme. Additionally, we updated the Hardhat and Foundry compilation
 configurations so that they did not strip bytecode hash metadata, which is required by
 Echidna to match deployed contracts.

 To run the Echidna fuzz tests, take the following steps:

 ● To compile the project, invoke Hardhat in the
 optimism/packages/contracts-bedrock directory by running the following
 commands:

 ○ npx hardhat clean

 ○ npx hardhat compile

 ● Invoke Echidna against a contract containing property tests by running the following
 command. This will tell Echidna to use the previously created compilation and to
 target the provided contract in a fuzzing campaign:

 echidna-test --contract <contract_name> --crytic-args
 --hardhat-ignore-compile .

 Go Test Tests (op-node, op-e2e, op-geth)
 The go test command invokes unit, integration, and fuzz tests written using Golang’s
 native testing package. We produced unit and fuzz tests for op-node and op-geth , as
 described in the Automated Testing table.

 ● To run the end-to-end tests within the optimism/op-e2e directory and the
 op-node unit tests within the optimism/op-node directory alongside any existing
 tests, run the following command from the respective directories:

 Trail of Bits 29 Optimism Security Assessment
 PUBLIC

 ○ go test -v ./…

 ● To run individual unit tests, use the following command instead:

 ○ go test -v -run <TestName>

 ● To run fuzz tests written for op-node and op-geth , run the following command
 from the directory containing the test file. The tests will run until the process is killed
 or interrupted:

 ○ go test -v -fuzz <TestName>

 Trail of Bits 30 Optimism Security Assessment
 PUBLIC

 C. Recommendations for Improving Testability

 This section includes recommendations for improving the testability of the codebase.

 Solidity Smart Contract Testing
 ● To use on-chain property fuzzers, such as Echidna, property tests are written in

 Solidity. However, on-chain property tests cannot access various aspects of the
 chain state or results. Therefore, we recommend designing functionality in a way
 that allows the results to be tested on-chain.

 ● To ensure that all of the routines in a given contract can be tested, verify that the
 relevant inputs, state changes, and outputs can be captured by a separate method
 in the contract. For instance, emitted events cannot be queried on-chain; they can
 be verified only off-chain.

 ○ If a test intends to verify values within an emitted event, consider splitting
 the relevant method into a helper function that returns the values rather
 than emitting them in an event. The original method could use this helper
 function to perform the underlying work and later emit the output data in an
 event itself, while test methods could target the helper directly to verify
 output methods.

 ■ For example, one could split the
 OptimismPortal.depositTransaction logic into a helper method
 that returns values rather than simply emitting a log, as these values
 can be validated by a test using the helper method. Alternatively, one
 could wrap the emitted event in a separate virtual function that can
 be overridden by a test contract derived from OptimismPortal so
 that it can capture these values.

 ● Ensure that the contracts can be easily deployed from a separate contract where
 possible. Echidna deploys compiled contracts with no constructor arguments and
 executes transactions against publicly accessible methods in an attempt to produce
 state changes.

 ○ For contracts that take constructor arguments, consider either creating a
 deriving contract that satisfies the constructor arguments with hard-coded
 values or creating a separate contract to deploy such contracts with the
 appropriate constructor arguments used for testing.

 ■ Carefully consider the tested contracts’ code composition when
 making such decisions.

 Trail of Bits 31 Optimism Security Assessment
 PUBLIC

 ○ For complex contract developments, consider using Etheno alongside
 Echidna.

 ● Consider integrating the project’s Echidna fuzz tests to the project’s CI/CD pipeline,
 possibly through the use of Echidna GitHub Actions .

 ○ Leverage the test-limit configuration variable to limit the duration of the
 fuzzing campaign in the CI process.

 ○ Ensure that the fuzz tests are run at regular intervals. Tests that pass do not
 necessarily indicate a lack of vulnerabilities. The constraints required to
 violate a property test may not be found in one run, but the fuzzer may catch
 the latent issue in a later run.

 ● Consider adding rules to Slither’s existing set of static analysis rules by plugging
 detectors or other custom scripts into Slither’s detector API. To observe how the
 Slither API can be used to verify the integrity of a codebase, run the following
 command from the optimism/packages/contracts-bedrock directory:

 python3 ./slither_api_example.py

 As a proof of concept, this script discovers all Echidna property tests and the
 contracts they live within, specifies the contracts that they immediately inherit from,
 and performs a check against OptimismPortal.depositTransaction to ensure
 that no high-level calls were added/removed and that an if statement exists for
 _isCreation that contains only a require statement comparing _to to
 address(0) .

 Note that the test against OptimismPortal was written to check every AST node
 and its underlying IR to show how Slither can be used to iterate over every
 statement or expression in a method and detect specific patterns or variables
 across multiple expressions. However, the test could be simplified to instead check
 the source text for specific segments.

 The use of the Slither API can enable the CI/CD pipeline to catch issues that arise
 from changes mistakenly introduced by developers, such as changes that violate
 some property of a given method. For instance, a Slither script could be written to
 differentiate between internal and external calls to ensure that no external calls are
 performed in a given method.

 L1/L2/op-node Testing
 ● We recommend creating an API that simplifies the project’s end-to-end testing.:

 Trail of Bits 32 Optimism Security Assessment
 PUBLIC

https://github.com/crytic/etheno
https://github.com/crytic/echidna-action

 ○ The API should provide methods to initialize accounts with different balances
 on L1 and L2 and provide a simplified test account structure with the key
 path, private key, and TransactOpts , alongside other account properties.

 ○ The API should ensure that timeout-based tests do not fail simply because
 the timeouts are set too low. For example, throughout the op-e2e tests,
 various statements wait one second for a block to propagate, which may not
 be long enough. Increasing the timeout may reduce the likelihood of
 false-positive test failures for slower systems (such as the CI process).

 ○ The API should include methods to execute actions such as sending deposit
 transactions, sending withdrawal requests, creating arbitrary transfer
 transactions on L1/L2, and causing fork conditions on L1/L2. The testing
 harness could automatically execute these actions and update expected
 values, such as expected balances/nonces on L1/L2, which are automatically
 asserted at the end of the test alongside any conditions that the tester
 asserts within the test immediately.

 ■ Simulating fork conditions may require support for rolling back
 previous actions (and their changes to expected values).

 ■ Ideally, the system should allow these actions to be invoked in parallel
 (from goroutines) to simulate typical network behavior (e.g., multiple
 L1 deposit transactions submitted at once).

 ■ The system should ensure that blocks produced in tests simulate
 conditions for multiple Optimism system–related transactions
 included both simultaneously and individually in a single block.

 ■ Consider writing all relevant end-to-end tests so that they can be run
 against various system configurations, such as differing sequence
 windows and gas fees.

 ○ Finally, the API should ensure that the same test can be easily rerun with
 differing system configurations; this will ensure that the system does not
 exhibit undefined behavior as a result of edge cases arising from various
 configurations.

 ● For unit tests that depend on the result of processing certain data and making sure
 routines succeed or fail as expected, ensure that as many permutations of the input
 data as possible are tested. Review the existing unit tests to identify hard-coded
 values that would increase test coverage if they were randomized or fuzzed values
 instead.

 Trail of Bits 33 Optimism Security Assessment
 PUBLIC

 ○ For example, some unit tests within op-node depend on the
 MarshalDepositLogEvent method to produce a deposit event that is used
 as input to test deposit derivation functions. By reviewing this method, we
 can see that deposit versions are hard-coded to valid values. Modifying the
 unit tests’ helper methods to accept additional fields (such as the deposit
 version field) will add the flexibility necessary to test additional invariants
 (such as whether deposit logs with an invalid version produce derived
 deposits).

 Trail of Bits 34 Optimism Security Assessment
 PUBLIC

