
Formal Verification Report

Optimism Labs
Delivered: 2022-12-23

Prepared for Optimism Labs by Runtime Verification, Inc.



Disclaimer

Introduction

Foundry+KEVMWorkflow

Methodology

Contract setup

Looping behavior

Specification level

The Process

Conclusions

Detailed findings

Successful proofs

Errors in the code

Gas optimizations

Success of proving process

Request from Optimism

Deliverables

1. Report

2. Recommendations for integrating kevm into our dev process

2



Disclaimer

This report does not constitute legal or investment advice. The preparers of this report present
it as an informational exercise documenting the due diligence involved in the secure
development of the target contract only, and make no material claims or guarantees concerning
the contract's operation post-deployment. The preparers of this report assume no liability for
any and all potential consequences of the deployment or use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public offering
carries substantial risk. This report makes no claims that its analysis is fully comprehensive,
and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components critical to
the correct operation of this system.

The possibility of human error in the manual review process is very real, and we recommend
seeking multiple independent opinions on any claims which impact a large quantity of funds.

3



Introduction

Optimism Labs has engaged Runtime Verification for a pilot project on using mechanized formal
verification on the Optimism code base using KEVM. The goal is to create Foundry fuzz tests for
the full functionality of some core functions, then use KEVM’s Foundry integration to prove that
these tests will pass under all circumstances. Normally, formal verification with KEVM requires
building out a set of assumptions and theorems that allow the underlying K prover to
automatically prove the desired specifications (or disprove them and find a bug). KEVM-Foundry
is beta software which requires the engagement to both fine-tune the tooling as well as
performing the normal proving tasks. Therefore, the engagement has been focused on both
providing assumptions and theorems useful for the Optimism codebase, as well as improving
the KEVM-Foundry integration.

The target for this engagement has been the depositTransaction function in the
OptimismPortal contract. The function is crucial for censorship resistance of the Optimism
rollup – it provides a mechanism for sending transactions to Optimism via transactions on
Ethereum that can not be ignored by sequencers. The function does this by emitting an event.
The aim is to prove or disprove that the depositTransaction will always emit the correct
event, except under a finite and enumerable set of conditions of obviously incorrect invocations.

4



Foundry+KEVM Workflow

The KEVM-Foundry integration re-uses the property tests written for Foundry as formal
specifications for KEVM proofs. The main advantage of this approach is that specifications can
be written and read in Solidity and no further knowledge of a dedicated specification language is
required to follow along. Another benefit of this method is that we can run the property tests
before we try to prove them symbolically. This gives us a faster feedback cycle. The following
flowchart visualizes the high-level workflow:

5



6



Methodology

We have built out the proof by writing simplified versions of the Solidity function and gradually
making more and more realistic versions of the function, and proving the specification of each
in turn. There have been three axes to do so:

1. Contract setup – executing the code in simple or more realistic conditions.
2. Looping behavior – avoiding loops that complicate proofs.
3. Specification level – giving a full spec of the code written as a single function, or

breaking it into more parts, or less complete subspecifications.

Contract setup
On the one hand, we have simplified invocations by first putting a version of the
depositTransaction directly in the test contract, then producing a more realistic version that
deploys a simplified OptimismPortal contract and tests against it, before testing against the
full contract.

7



Looping behavior
One of the most complex aspects of mechanized formal verification is proving the correct
termination of loops. The depositTransaction function seems loop-free on the surface, but
the contract body contains three loops on the bytecode level. The first is the usage of
abi.encodePacked, where the last parameter is a dynamic array of bytes, passed in as an
argument to depositTransaction and stored in memory. The copying requires iterating over
the array. Similarly, the Solidity compiler will generate a bytecode level loop when the encoded
bytearray is passed as argument to the event. The third loop is in the metered modifier, which
uses up remaining gas in a loop.

To simplify the proofs, we have first proved that the function behaves correctly when the
metered modifier is removed and the dynamic byte array passed to depositTransaction is empty.
This guarantees a loop-free execution. From there, we have set practically infinite dynamic array
sizes (on the order of exabytes or more) and attempted the proofs over those conditions. Finally,
we have reinstated the

Specification level
For many proofs we need to start by proving less general versions of our theorems. For
example, only proving that abi.encodePacked works correctly, or that certain arithmetic
expressions can be simplified in specific ways. These proofs can then be recombined into larger
proofs of more useful theorems.

8



The Process
The first step was writing specifications. We started at the middle level of complexity: a mostly
complete spec that is split up into a few different sub-proofs. We wrote one specification for the
fact that the proofs should fail when a transaction is passed the isCreation flag while not
being addressed to the 0x0 address, and one spec each for the cases where: it is a correct
contract creation transaction from an EOA; when it is a contract creation from a contract; when
it is not a creation transaction and the sender is an EOA; and one for when it is not a creation
transaction and the sender is a contract. These specifications are over a newly deployed
contract – which is not expected to cause any issues, because the depositTransaction

function does not rely on any contract storage. (TODO: is this correct? check metered modifier.)
There are some simplifying assumptions in these specs that will need to be generalized for the
proof to be as complete and simple as possible:

1. The contract should be written to some address as already deployed, rather than being
freshly deployed as part of the test.

2. The spec should be written as a single function, which covers both the revert case and
all the success cases.

9



Conclusions
We found some relevant deviations from the specification, and we learned some limitations of
the current proving environment that we have addressed and scheduled to address in future
internal work.

Overall we have gained high confidence in the correctness of the depositTransaction() function,
excluding the metered modifier, based on verification alone. It behaves correctly in all instances
we have verified. The remaining risks are: whether the metered modifier can cause the function
to exit successfully, but without emitting the event; if we have missed any edge case in our
specifications; whether the deployment process of the contract introduces some bugs (making
the actual executed bytecode different from the code we execute locally). The first two of these
risks we consider minimal. Firstly, the metered modifier, having its bulk of logic being executed
after the body of the depositTransaction(), could not likely revert before the event is emitted.
The remaining possibilities for violating the specification are unspecified failures (of which we
have found two) but which are of far less importance than that events are emitted on success.
Secondly, it’s simple to hand-verify that our specifications cover all input parameters. The third is
more complex but causes us little worry – the function is not reliant on contract storage except
in looking at resource usage, which is not enough to prevent a correct event from being emitted.

Of course, we would ideally be able to go all the way on our axes of specification and proving
that specification: covering the metered modifier, giving the specification in a single function
and operating on the deployed contract code with symbolic state. To reach these goals we
would need to make some further refinements to KEVM-Foundry – which we have identified and
started pursuing during the engagement.

Detailed findings

Successful proofs
We have proved the code correctness under the following conditions:

- Contract setup: Local execution
- Looping behavior: Unbounded data
- Specification: Several but exhaustive specifications

10



Our verification uses arbitrary but fixed addresses, and thus would not locate issues that could
arise from calling the code from other specific addresses. However a simple thorough look at
the code reveals that any address will do, and the only semantic difference is whether or not the
from field should be aliased or not.

Errors in the code
We found two cases where the function deviates from the specification. Both relate to the
metered modifier, and we do consider the deviations as very minor bugs.

The specification stated that the call should always emit the TransactionDeposited event, unless
the calldata specifies it to be a creation event and the recipient address is not the 0x0 address.
Apart from the trivial failure of this specification where not enough gas was passed and
execution halts prematurely, at least the following two scenarios violate that specification.

1. If the _gasLimit parameter is set too high so that the maximum available resource limit
would be exceeded, execution will fail with the error message “ResourceMetering:
cannot buy more gas than available gas limit”.

2. If there has already been resources used in the current block and the caller passes too
high of a _gasLimit, then the addition of params.prevBoughtGas + _amount in the
metered modifier will cause an overflow and fail.

11



Both of these are edge cases related to bad input data and cause a failure and a revert, and thus
are not dangerous to the Portal.

Gas optimizations
Proving code involving loops tends to require using what is called “loop invariants”. This makes
it so that even implicit loops in the EVM end up being discovered as part of the proving process.
We found an implicit loop in the use of abi.encodePacked() over an array stored in memory, but
not in one stored in calldata. The loop copying data from memory is 2-3x as gas expensive as
simply copying the calldata, and is harder to produce a proof over because it compiles to a loop
in the EVM.

Storing the data argument in calldata instead of memory is therefore a good way to gas golf the
depositTransaction function. It would also be possible to avoid abi.encodePacked() and use
inline assembly to copy the relevant parameters directly from calldata, since they are
unmodified within the function.

Success of proving process
The Foundry integration into KEVM is still in alpha and has improved significantly during this
engagement. On the one hand, we have improved the K frameworks ability to reason over typical
EVM situations, by adding more simplifications to KEVM and weeding out reasoning bugs in K.

One thing that has proven especially hard to work with is code which semantically depends on
the remaining gas. When proving code correctness, it is usually best to assume infinite gas for
the transaction. This means gas deductions have no real effect on the gas left (infinity -
constant value = infinity). This in turn means that the symbolic expression of gas left becomes
structurally simpler, which speeds up proving and improves legibility. It is also generally sound,
because running out of gas causes a trivial revert that is rarely of any interest. However when
the code uses the gasleft() function in Solidity (the GAS opcode in EVM) then infinite gas is
no longer a sound or even meaningful assumption. There are a few different approaches that
can be taken to get past this issue, and we are currently debating which to incorporate into
KEVM.

From a user perspective perhaps the most helpful improvement to the framework is the ability
to visually explore all the different branches of the proof. The below image is a view of a
particular leaf in an ongoing proof. The left pane shows this leaf in its position in the proof tree;
the top pane shows the name of the proof “node” which is useful for closer inspection and
debugging; the middle pane shows the current state in that node; and the bottom right pane
what restrictions applies to the variables.

12

https://github.com/runtimeverification/evm-semantics/pull/1520


Finally, we have found that in terms of communicating specifications both internally and with
clients, writing specifications in Solidity with “cheat code” calls is simpler than building
specifications in K. The common language as well as the ability to immediately compile and
fuzz leads to a great reduction in specification bugs – something that is quite common when
writing K specs but which we have had no serious instance of in this engagement.

13


